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Constraints Have Different Concurrent Effects
and Aftereffects on Variability

Patricia D. Stokes and Helen M. Harrison
Columbia University

Three experiments showed that constraints imposed early in learning have different effects on variability
when they are in effect and after they are removed. Task constraints, which determine how something can
be done, limited the number of possible responses in a computer game. Varjability constraints, which
specify how differently something must be done, required that each response differ from some number
of prior responses. Less restrictive constraints (Experiments 1 and 2) produced higher variability during
the constraints. More restrictive constraints (Experirents 2 and 3) led to higher variability after the
constraints were relaxed. The authors discuss how these differences reflect strategies acquired during the
constraints (default rules) and modified in closely related ways (exception rules) afterward.

Creativity has long been associated with variability (Csikszent-
mihalyi & Getzels, 1971; Gruber, 1988; Wallace & Gruber, 1989)
but only recently with constraints (Stokes, 2001a, 2001b). In the
arts, creative individuals maintain high levels of variability by
means of self-imposed constraints. For example, to see how light
breaks up on things, Monet first constrained light—dark contrasts,
replacing them with contrasts between pure hues. To learn how
light breaks up between things, he constrained motif. Painting the
identical composition (e.g., the facade of Rouen cathedral, two
haystacks in a field, a row of poplars reflected in the Seine) at
different times of day, of year, and most importantly, in different
light showed him, and us, what the enveloppe or atmosphere looks
like.

Constraints imposed by a domain also promote variability. In
poetry, traditional metric forms—alexandrine, hexameter, haiku—
force writers to “search for words, select, reject, consider, make
discoveries” (Byatt, 1991, p. 176). In architecture, multiple con-
straints—function, site, budget, buyer’s taste—produce structures
as different from each other as Frank Gehry’s Guggenheimm
Museum in Bilbao, Spain, with its shiny, splayed, industrial sur-
faces, and L. M. Pei’s ethereal, pyramidal entrance for the Louvre
in Paris.

This article does not argue that constraints per se produce
breakthroughs. Rather, our interest is in how constraints—usually
seen as restrictive and constrictive—can be used to increment the
variability necessary for creativity, learning, and problem solving.
We begin by reviewing current explanations of variable behavior.
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Variability

Variability is defined as a continuum (Stokes, 1999b) with
levels ranging from low to high. The levels are learned (Neuringer,
1993) and appear to be task or domain specific (Stokes, 2001
2002). An important issue concerns the content of that learning.

Neuringer (Grunow & Neuringer, 2002; Neuringer, 1993;
Neuringer, Deiss, & Olson, 2000) was the first to show that
variability can be selected and maintained by its consequences. In
their classic study, Page and Neuringer (1985) required pigeons to
produce sequences of eight pecks to right or left keys that differed
from some number of immediately prior sequences. Variability
increased as the number required increased. (The procedure is
described more fully later in the section on Variability Con-
straints.) Page and Neuringer hypothesized that reward selects
some output of an endogenous random variability generator. In this
view, the selected variability level is the content of learning.
Alternatively, Machado (1997) proposed that response patterns,
which generate' specific levels of variability, are the content of
learning. Depending on the relative probabilities specified by a
reinforcement schedule, some stable aiternation pattern will earn
maximal reward. Schedules that preclude strong sequential depen-
dencies between responses generate high variability (Machado,
1992, 1994).

Our view is more eclectic. Taking an operant perspective, we
have argued that learning involves how to do something and how
differently to continue doing it—the latter is called a learned or
habitual variability level (Stokes, 1995, 1999a; Stokes & Balsam,
2001). Supporting this view, variability levels acquired early in
learning have been maintained in their respective training domains
by rats (Stokes, 1995) and college students (Stokes & Balsam,
2001). We have also taken a cognitive, problem-solving perspec-
tive, suggesting that variability levels are incorporated into, or
generated by, strategies acquired during learning (Stokes & Bal-
sam, 2001; Stokes, Harrison, McElroy, & Paterniti, 1997; Stokes,
Mechner, & Balsam, 1999).

A strategy is a response selected from a set of alternatives to
reach a specific goal (Siegler, 1996; Wong, 1977). The set consti-
tutes a hierarchy. The strategy with the most general condition and
the greatest strength (due to past success) is the default rule. Other
strategies in the hierarchy have more specific conditions and serve
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as exception rules to the default (Holland, Holyoak, Nisbett, &
Thagard, 1987). Variability can follow from a strategy specifying
a particular level or from a strategy generating a response pattern
with its attendant level of variability.

Constraints

The problem-solving literature considers constraints two sided,
as both limiting and directing search (Reitman, 1965). In other
words, constraints preclude some responses to promote others.
Some responses (e.g., reproduce exactly, give the single correct
answer) indeed preclude variability and promote stereotypy. Those
that increase variability do so by precluding reliable, predictable
responses and promoting unusual, even novel ones (Stokes, 2001a,
2001b). Two kinds of constraints known to affect variability are
task constraints, which determine how differently something can
be done, and—given that multiple responses are possible in a
given task—variability constraints, which specify how differently
a task must be done.

Variability Constraints

Variability constraints specify either levels or kinds of variabil-
ity. The first are quantitative, targeting how many different or
same things are done. The second are qualitative, concerned, for
example, with whether the things done are novel or fit in few or
many categories.

Specific levels (high or low) can be selected by rewarding
responses that differ from some number of prior responses. The
required number is called a lag. For example, with a Lag 2
contingency on response sequences composed of four A and/or B
responses, the third sequence in this series—AAAA, BBBB,
AABB-—would be rewarded, because it differs from the two
previous ones. The third in this series—AABB, AAAA, AABB—
would not be rewarded, because it repeats one of its two prede-
cessors. Lag requirements have been used to increase variability in
rats and pigeons (Hunziker, Saldana, & Neuringer, 1996; Morgan
& Neuringer, 1990; Morris, 1987; Page & Neuringer, 1985), in
college students (Wong & Peacock, 1986), and in children (Bou-
langer, 1990; Saldana & Neuringer, 1998).

When a lag is introduced determines whether high variability
will be maintained after the constraint is removed. Studies with
college students (Stokes, 1999a; Stokes & Balsam, 2001) have
shown that early lag requirements continue to influence variability
levels in the same task after the requirements are removed. Lags
introduced later only increase variability when they are in effect.

An alternative procedure targets low-probability responses for
reward (Bryant & Church, 1974; Machado, 1997; Maltzman, 1969;
Neuringer, Kornell, & Oluffs, 2001). Machado (1994) called this
frequency-dependent selection becanse high variability results
from rewarding infrequent behaviors. For example, with a two-key
apparatus, as responding on one key increases, the probability of
reinforcement decreases on that key and increases on the other.

1t should be noted that both frequency-dependent and lag pro-
cedures involve intermittent levels of reinforcement, which have
been shown to increase (Tatham, Wanchisen, & Hineline, 1993),
decrease (Herrnstein, 1961), or have inconsistent effects on (Eck-
erman & Lanson, 1969) variability. More relevant to the present
study are the combined effects of variability constraints and re-
ward levels. Looking at the relative contribution of each, Blough

(1966) and Machado (1989) reported that variability was con-
trolled by frequency-dependent requirements and not by rates of
reinforcement. In an important recent study, Grunow and
Neuringer (2002) demonstrated that the effects of intermittent
reinforcement were inversely related to levels of variability prior
to the decline in reward. When baseline variability was high,
decreased reinforcement lowered it; when it was low, variability
increased.

Kinds of variability include aspects of divergent thinking: (a)
fluency, the number of different solutions; (b) flexibility, the
number of solution categories (e.g., uses for a brick could fit in the
categories “decoration,” “weapon,” or “building material”), and (c)
originality, the number of unusual solutions (Guilford, 1950).
Rewards (Campbell & Willis, 1978; Glover & Gary, 1976; Ryan &
Winston, 1978), as well as instructions (Harrington, 1975; Runco,
1986), selectively increase the three types of divergent thinking.
For example, Runco and Okuda (1991) showed that instructions to
“be flexible, approach each question from different angles, and
focus on variety” (p. 437) incremented (promoted) flexibility
scores but depressed (precluded) those for originality.

Novelty is a kind of variability more difficult to promote be-
cause it is rare. Nonetheless, rewards have increased novelty (and
precluded repetition) in the swimming and leaping topographies
displayed by porpoises (Pyror, Haag, & O’Reilly, 1969), as well as
in drawing and block-building forms produced by children
(Funderbunk, 1977; Goetz, 1981; Holman, Goetz, & Baer, 1977).
Here too, constraints continue to affect variability after they are
relaxed. Holman et al. (1977) reported high levels of variability
after reward for novelty ceased, as well as generalization within a
training domain, for example, from drawing with felt pens to
painting. More recently, Eisenberger and colleagues (Eisenberger
& Armeli, 1997; Eisenberger & Selbst, 1994) demonstrated gen-
eralization across domains: Reward for novel drawings increased
novelty in a subsequent, unrewarded unusual-uses task, and vice
versa.

Task Constraints

Task constraints define domains and involve materials and
conventions concerning their use. In the arts, creative individuals
maintain high levels of variability through self-imposed task con-
straints, which determine how differently something can be done.
For example, Jackson Pollack’s so-called “drip” paintings were
organized around a handful of purposefully placed gestures—
elbow, X, and comma shapes. This gestural constraint provided the
armature that supported a wide variety of paint applications:
splashing, smudging, pouring, brushing, scrawling—with can,
brush, and stick (Kimmelman, 1998). In other words, precluding
variety in shape promoted variety in application. Both this and the
earlier Monet examples involve task constraints imposed by the
artists themselves (for other artistic examples, see Stokes, 2001a,
2001b). For the less creative among us, and certainly for experi-
mental participants, task constraints are imposed by others.

One way in which all tasks constrain variability is in the number
of alternatives they allow. A task popular with variability research-
ers involves making a series of left-right key presses to transverse
a square or triangular matrix. We refer to these response sequences
as paths and the places where they exit a matrix as endpoints.
Some research using this task shows that having more alternatives
increments variability. Increasing the number of response se-
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quences from the upper-left to the lower-right corer of a square
matrix from 70 (Schwartz, 1982a) to 256 (Page & Neuringer,
1985) increased variability. Page and Neuringer attributed the
jump in variability to the laws of chance: Because the probability
of repeating 1 of 70 responses (1/70) is higher than the probability
of repeating 1 of 256 (1/256) responses, repetition should be higher
and variability lower with fewer possible sequences. A triangular
display with more paths (256 from apex to base) and more end-
points for the paths (nine) also increased variability relative to the
original 70 path/one endpoint matrix (Tatham et al., 1993). Tatham
et al. (1993) hypothesized that the additional exits may have
“discouraged locking into a limited number of routes leading to a
single exit point” (p. 358).

Studies with other tasks have shown that having fewer alterna-
tives raises variability levels. When college students tried to pro-
duce useful inventions, those with no choice in either inventive
category (e.g., furniture, toys) or parts to be used (e.g., wheels,
handles) were more inventive than unconstrained students who
were free to choose from one or both categories (Finke, 1990;
Finke, Ward, & Smith, 1992). Compared with a group that could
open a latch in any way, guinea pigs constrained to using a single
paw were more variable in single-paw topography (Muenzinger,
Koerner, & Irey, 1929). As with variability constraints, the timing
of task constraints is important. A large early increase in the
number of required responses led to higher sustained levels of
variability in a computer game than exposure to the same shift only
slightly later (Stokes et al., 1999). Likewise, early exposure to a
more severe topographic constraint (press with right paw only vs.
press any way) sustained more variable press topographies than
introducing the same constraint later (Stokes, 1995).

Other task constraints known to affect variability involve the
apparatus and the amount of effort involved. Using the same size
and shape matrix as Schwartz (1982a), Wong and Peacock (1986)
showed that replacing the original light panel with a video display
increased variability, whereas increases in physical, temporal, or
cognitive effort lowered it. For example, widely separated left (L)
and right (R) response keys resulted in acquisition of a “block
alternation strategy” (Wong & Peacock, 1986, p. 146) in which
students pressed the maximum number of times on one key before
switching to the other (e.g., RRRRLLLL, LLLLRRRR). Close
placement of the left and right keys produced more within-
sequence alternations (e.g., LRLRLRLR) and more different
sequences.

The Present Experiments

According to this brief literature review, increased variability
constraints increment variability, whereas increased task con-
straints cause either declines or increases. Our two primary goals
were, first, to clarify how different task and variability constraints
contribute to higher or lower learned variability levels and, second,
to construe the contents of that learning.

A third goal was to examine the hypothesis that variability is the
product of an innate quasi-random generator (Neuringer, 1986).
We are cautious regarding this concept for a simple reason: Vari-
ability and randomness are not equivalent. Variability is a measure
of how differently one behaves. Randomness is a measure of the
predictability of that behavior. Nonrandom responding is predict-
able because it is structured; random responding is unpredictable
because it is unstructured (Nickerson, 2002). Neither requires high

variability nor precludes low variability. A Bach fugue is both
highly structured and highly variable. The result of tossing a fair
coin 25 times can be both unpredictable and invariant (e.g., all
heads or all tails).

To these ends, we conducted three experiments to examine the
effects of task and variability constraints on sustained or temporary
levels of variability. We adapted a task used to show that more
possibilities (Jower task constraint) led to greater variability
(Tatham et al., 1933). Our version involved two computer-

generated triangles (hereinafter referred to as pyramids) that dif-

fered in number of possible paths and number of endpoints for
those paths.

Experiment 1 compared responding during four different lags
(variability constraints) on the two pyramids (task constraints). To
test Page and Neuringer’s (1985) law-of-chance hypothesis, we
compared outputs of a random generator with student perfor-
mance. Experiment 2 separated two aspects of the task constraint
in Experiment 1, constraining either number of possible paths or
endpoints on one size pyramid and examining variability during
the constraint and after it was relaxed. Experiment 3 also looked at
temporary and sustained variability levels, using separate and
combined endpoint (task) and lag (variability) constraints.

Experiment 1: Combined Task and Variability Constraints

Experiment 1 compared responding on two versions of a com-
puter game with a triangular display (the pyramid) in which each
path from apex to base required 5 or 10 left and/or right arrow key
presses. The pyramid requiring 10 presses had 1,024 possible paths
and 11 endpoints; the one requiring 5 presses had 32 paths and 6
endpoints (task constraints). The same series of ascending lag
requirements (variability constraints) was used on each pyramid.
As discussed earlier, lag refers to the number of prior sequences
from which a current sequence must differ.

If having fewer possibilities decreases variability, variability
should be lower at each lag on the smaller than on the larger
pyramid, and vice versa. If variability is due to students acting as
if they were random generators, there should be no difference
between the output of the students and the output of the random
generator on the same size pyramids. If additional effort (5 more
presses per path on the 10-pyramid) decreases variability, differ-
ences between the pyramids might be minimal.

Method
Participants

Ten first-year undergraduates at Barnard College, all of whom were
women, participated to fulfill an introductory psychology class
requirement.

Apparatus and Stimuli

Ten personal computers, in separate 1.5 m X 3.5 m experimental rooms,
were used. Figure 1 shows what we refer to as a 5-pyramid. Superimposed
on the pyramid was a grid with a white start box at the top and alternating
red and blue diamonds between the white box and the bottom row of
orange triangles, which were the endpoints. Pressing the left or right
directional arrow keys moved the white box through the pyramid. A total
of five presses, on right or left keys, moved the box from its starting
position to one of the six orange triangles at the bottom.
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Figure 1. 'The 5-pyramid display with endpoints designated by letters A to F. Number of paths to each endpoint

is shown in parentheses underneath.

When a press sequence met a contingency, the pyramid disappeared and
the words “1 point” plus a cumulative total of points eamned appeared,
accompanied by a beep. At the end of each phase, the words “the session
is over” appeared on the screen. Because 5 presses were required, this
pyramid is called a 5-pyramid. The other pyramid (the 10-pyramid) re-
quired 10 presses.

Procedure
The following instructions were read to participants:

The purpose of this experiment is to see how simple motor tasks are
learned. You have been assigned to a group that gets feedback from
the computer. Your task is to earn points by generating key press
sequences. You can use two keys—the left and right directional
arrows. After a correct sequence, a point will appear on the screen.
During the experiment, the sequences that earn points may change. If
this happens, you may have to alter your pressing patterns. You may
not hold keys down for long periods of time. You must press a key and
let it go. When the program stops, please come and get me.

Because we have been challenged for including the instruction alerting
students that they may have to change the way they press, two demonstra-
tion groups (with and without this instruction) were run on an identical
series of constraints. The results, which show no difference in outcome, are
presented in the Appendix.

All of the participants worked on both pyramids. To avoid order effects,
half of the participants worked for 100 reinforced trials on the 5-pyramid
followed by 100 trials on the 10-pyramid, whereas the other half worked on
the pyramids in reverse order. The sequence of lag requirements was
identical on both pyramids. Lags increased from O to 2 to 10 to 20. During
Lag 0, a current path did not have to differ from any prior path. Because
the contingency reset at the start of each block, the Lag 2, 10, and 20
contingencies were based only on sequences emitted during those biocks
and increased trial by trial until the full lag could be met. For example,
during the Lag 2 block of trials, the number of prior paths from which a
current path had to differ increased from 0 on the first trial to 1 on the
second trial to 2 on all trials after the second trial. This meant that the first
trial in the Lag 2 condition was always reinforced. The second trial was
reinforced only if it differed from the first. After the third trial, each path
had to differ from the previous two to earn points. A similar one-step-at-

a-time increase in lag requirement occurred at the start of the Lag 10 and
Lag 20 blocks. Each of the four lags lasted until 25 points were earned for
correct sequences. There was no time limitation for completion of the 100
trials in each of the pyramids. Participants were debriefed at the end of the
experiment. Ten separate outputs of a program generating random se-
quences of 5 or 10 lefts or rights were entered as data into the same
sequences of lags on both sizes of pyramids.

Results
Student Data

To compare responding between pyramids and between lags, we
ran mixed two-way analyses of variance (ANOV As) with pyramid
size (5 and 10) and lag (0, 2, 10, and 20) as variables.

Number of different paths. This is our measure of variability.
The top panel of Figure 2 shows the mean number of different
paths taken through the two pyramids at each lag. There were main
effects of pyramid size, F(1, 18) = 10.252, p < .01, ¥ = .363,
and lag, F(3, 16) = 19.117, p < 001, n* = .782. Number of
different paths increased as the lag requirements increased on both
pyramids and was greater at each lag on the larger pyramid. The
interaction was not significant (p = .45).

Reinforcement percentages. Because reinforcement density
may be related to variability, we calculated the percentage of
reinforced paths during each lag. These are shown in the middle
panel of Figure 2. There were significant main effects of pyramid
size, F(1, 18) = 22,509, p < .000, n* = .556, and lag, F(3,
16) = 54.834, p < .000, w* = .911. As lags increased, percentages
decreased on both pyramids, but more so on the smaller one. The
interaction was significant, F(3, 16) = 10.654, p < .000, " =
.666. Paired sample ¢ tests showed no changes between Lags 2
and 10 (p = .951) or between Lags 10 and 20 (p = .225) on the
larger pyramid. On the smaller pyramid, percentages declined
significantly between Lags 2 and 10, #9) = 2.939, p < .05; the
decline approached significance between Lags 10 and 20 (p =
.063).
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Figure 2. The three panels present data for responding on the 5-pyramid
(white triangles) and the 10-pyramid (black triangles) during all lags: (top)
mean number of different paths; (iiddle) mean percentage of reinforced
paths; (bottom) mean percentage of reinforced switches between different
paths.

To see if switching between paths was rewarded (and perhaps
the source of high variability), we examined percentage of rein-
forcers earned for switching between different paths during each
lag. These are shown in the bottom panel of Figure 2. There was
no main effect of either lag (p = .104) or pyramid size (p = .438)
and no significant interaction (p = .438). Because the mean
percentages at Lag 0 do appear lower than the others, we compared

Lags 0 and 2. Again, there were no significant effects: lag, p =
.063; pyramid size, p = .582; interaction, p = .459.

Correlations. To see if either reinforcement density or rein-
forcement for switching was related to variability, we ran a Pear-
son correlation between number of different paths, percentage of
reinforced paths, and percentage of reinforcers earned for switch-
ing between paths. Data were collapsed over both pyramids. Num-
ber of different paths and reinforcement for switching between
paths were significantly correlated during Lag 0 (r = .636, p <
.05). Number of different paths and percentage of reinforced paths
were significantly correlated during Lag 20 (r = .597, p < .005).
This last correlation is positive, indicating that higher levels of
reinforcement, not lower ones, were associated with higher
variability.

Number of presses. This is our measure of effort. Mean num-
ber of presses at each lag on the 5-pyramid were as follows: Lag
0 = 125, Lag 2 = 155, Lag 10 = 213, and Lag 20 = 239. On the
10-pyramid, the mean number of presses were as follows: Lag 0 =
250, Lag 2 = 293, Lag 10 = 300, and Lag 20 = 303. There were
significant main effects of lag, F(3, 16) = 19.628, p < .001, 0% =
.786, and pyramid size, F(1, 18) = 59.575, p < .001, o> = .768.
Number of presses increased as lags increased and was higher at
all lags on the larger pyramid. The interaction was significant, F(3,
16) = 3.172, p = .05, %* = .373. Paired sample ¢ tests showed that
number of presses increased significantly between Lags 0 and 2,
#9) = 2.479, p < .05, and between Lags 2 and 10, 1(9) = —3.408,
p < .01, on the smaller pyramid, but only between Lags 0 and 2,
1(9) = 3.224, p < .01, on the larger.

Self-reports. During debriefing, students were asked what they
did to earn points. Their descriptions were sorted into three sepa-
rate and two combined categories. All nonspecific references to
varying went into the vary category. Table 1 shows the results.
Fifty percent of the students simply said they went to endpoints at
the base of the pyramid, 30% mentioned pattern making, 10% said
they used different paths to an endpoint, and another 10% (in the
vary category) said they acted randomly. Only 2 students distin-
guished between the two size pyramids; both said that it was
harder to eamn points on the smaller one.

Table 1
Percentage of Students’ Self-Reports
Category Pattems Both® Endpoints Both® Vary

Experiment 1

5- & 10-pyramids 30 10 50 10
Experiment 2

1 endpoint 60 10 20 10

2 endpoints (10 paths) 40 50 10

4 endpoints 80 0 20

20 paths 60 30 10
Experiment 3

Lag 47 13 60

Endpoint 47 13 33 7

Combo 13 67 7 13

2 Both refers to a combination of adjacent categories, not a distinction
between them.
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Student Versus Random Sequence Data

To see if higher variability on the 10-pyramid was due to
students acting like random number generators, we entered 10
separate outputs of the random right-left sequence generator
(equal to the number of students) as responses on the computer
game for both pyramids and compared them with student perfor-
mance. To equalize number of paths, we compared the last 25
trials during each lag for the student and the random data. Separate
paired-sample ¢ tests were run for data on each pyramid. The top
panel of Figure 3 shows number of different paths taken during the
last 25 trials on the 5-pyramid.

The students differed from the random generator at Lag O,
1(18) = —3.967, p < .001; Lag 2, #(18) = —3.208, p < .01; and
Lag 10, #(18) = —2.250, p < .05. Students and random generator
did not differ at Lag 20 (p = .165). The bottom panel of Figure 3
shows number of different paths on the 10-pyramid. The students
differed from the random generator at all lags: Lag 0, (18) =
—3.333, p < .01; Lag 2, «18) = —4.157, p < .001; Lag 10,
1(18) = —3.613, p < .01; and Lag 20, 18) = —5.532, p < .001.

These results suggest that responding was more systematic or
structured on the 10-pyramid than on the 5-pyramid. One metric
indicative of structure, derived from information theory (Miller &
Frick, 1949), is an uncertainty. Uncertainty is a function of pos-
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Figure 3. Mean number of different paths during the last 25 trials of each
lag for students (black triangles) and random generated (white triangles)
data: (top) data from the 5-pyramid; (bottom) data from the 10-pyramid.

sible outcomes. Our measure, next-press uncertainty, reflects the
probability of a right press being followed by a right or left press,
and vice versa. As the internal structure of a path becomes less
orderly, the uncertainty will increase. Conversely, the more ste-
reotyped the internal structure, the lower the uncertainty will
become. Next-press uncertainty was computed using the formula,

UR/(R~-1)]=UR,R~1)~UR-1),

where U[R/(R - 1)] is the uncertainty in the joint distribution of the
current (R) and immediately prior (R — 1) responses. Figure 4
shows next-press uncertainties for all responses on the two pyra-
mids during each lag. A two-way ANOVA with pyramid size (5,
10) and lag (0, 2, 10, 20) as variables produced main effects of
pyramid size, F(1, 18) = 5.134, p < .05, n* = .222, and lag, F(3,
16) = 8473, p < .001, 7 = .614. The interaction was not
significant (p = .769). Next-press uncertainty was higher at every
lag on the 5-pyramid, confirming that responding was more or-
derly on the 10-pyramid.

Discussion

Our main question concerned the effects of task constraints.
These differed in number of possible paths and endpoints, as well
as in effort required.

Did more possibilities increase variability? Yes. Number of
different paths taken was greater at all lags on the pyramid with
more paths and endpoints. Did greater effort decrease variability?
No. Although number of presses was higher at each lag on the
larger compared with the smaller pyramid, variability was higher
on the larger pyramid. Did students perform like the random
number generator? Only on the smaller pyramid and only at the
highest lag, never on the larger pyramid.

Our second question involved the contents of learning. The
uncertainty analysis indicated that responding was more structured
on the larger pyramid. To help explain this greater orderliness, we
examined the raw data. The most noticeable pattern involved
wedge-shaped blocks in which the number of right or left presses
decreased or increased by one in each successive trial. In the
example shown in Figure 5, the wedge shapes are separated. Two
variants of this pattern were observed. In one, the decreasing series
of Rs or Ls was followed by alternating Ls and Rs (e.g., RRRRL,
RRRLR, RRLRL, RLRLR). In the other, it was followed by a
single change of press (e.g., RRRRL, RRRLR, RRLRR, RLRRR).

The wedge pattern is interesting for several reasons. First, it
could have been easily generated by a visual algorithm or strategy,
for example, “go straight down the right side of the pyramid, go
straight down the right side and turn left 1 up from the end ... 2
up...3 up...and so on.” Second, it may explain why, in the
debriefing, most students reported aiming at endpoints. Systemat-
ically shifting one left or right press in successive trials produces
paths that sweep (in an very orderly manner) across the bottom of
the pyramid in one direction and then the other. Third, patterns of
these kinds would produce many more different paths on the
10-pyramid (11 in one direction, 22 if continued in the reverse
direction) than on the 5-pyramid (6 in one direction, 12 if
reversed).

To see if this were the case, we counted number of successive
paths in each lag block that represented this kind of patterning,
dividing by the total number of paths in the block to get percentage
of paths in patterned blocks. At all lags, the wedge pattern ap-
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Figure 4. Next-press uncertainty for all trials of each lag on the
5-pyramid (white triangles) and 10-pyramid (black triangles).

peared more often on the larger pyramid, in which the percentages
were as follows: Lag 0, 42%; Lag 2, 50%; Lag 10, 46%; and
Lag 20, 30%. On the smaller pyramid, they were as follows: Lag 0,
27%; Lag 2, 39%; Lag 10, 21%; and Lag 20, 14%.

Although the wedge clearly cannot be the sole structuring ele-
ment on the larger pyramid, it does lend support to Tatham et al.’s
(1993) hypothesis that more exits (endpoints) increase variability.
The pattern is not possible on a square matrix with only one exit,
which is the kind used by Schwartz (1982a, 1982b).

In sum, we are left with Tatham et al.’s (1993) hypothesis: More
paths and more exits (endpoints) increase variability. The design of
Experiment 1 did not let us separate the effects of possible paths
and possible endpoints, nor did it let us look at responding after the
constraints were relaxed. Experiment 2 was designed to do both.

Experiment 2: Task Constraints

Given the results of Experiment 1, number of paths or number
of endpoints affects variability. In Experiment 2, using one size
pyramid allowed either number of endpoints or paths to be varied
in different groups. It is important to note that while it was possible

Figure 5. Example of a wedge-pressing pattern in which the number of
right (R) presses decreases in each successive path, whereas the number of
left (L) presses increases.

to vary within each set of task constraints, there was no explicit
variability constraint: A singie path could meet all requirements.
To see if either or both task constraints had lasting effects on
variability, we looked at responding during the constraints and
after they were relaxed.

Method
Participants

Forty Barnard College women undergraduates participated to fulfill an
introductory psychology class requirement.

Apparatus and Stimuli

The apparatus was identical to that used in Experiment 1. The stimulus
was the 5-pyramid. As shown in Figure 1, this pyramid has six endpoints,
identified in the figure by letters A to F. The number of unique paths
leading to each endpoint is also shown.

Procedure

Ten participants were randomly assigned to each of four constrained
groups. Table 2 shows the conditions.

The structure of the pyramid made it impossible to hold number of paths
completely constant while varying the number of endpoints across a
reasonable range. However, number of paths in the endpoint constraint
groups was quite close: 10 (with 1 or 2 endpoints) or 12 (with 4 endpoints).
In the group with 1 endpoint, 5 participants were rewarded for exiting at the
C endpoint; the other 5 were rewarded for exiting at the D endpoint. Data
from the group labeled B&E (10) in Table 2 were included in both endpoint
(2) and path (10) comparisons. The instructions read were the same as
those used in Experiment 1. The constraints were in effect until 50 points
were eamed. One hundred additional points were eamed after the con-
straints were relaxed.

Results

The experiment lasted for 150 reinforced trials, which—for
analyses—were divided into blocks of 25 reinforced trials each.
The last block in the constraint phase (26th to 50th reinforced
trials) and the last in the free phase (126th to 150th) were exam-
ined. Mixed two-way ANOVAs with group (1 endpoint, 2 end-
points [10 paths], 4 endpoints, 20 paths) and phase (constraint or
free) as variables were used to compare responding between these
blocks. Fisher’s least significant difference (L.SD) test was used for
post hoc comparisons. A significance level of .05 was used.

Two sets of comparisons were made: between groups in which
either paths (10-12) were relatively constant and number of end-

Table 2
Path and Endpoint Constraints in Experiment 2*
Path
Endpoint 10-12 . 20
1 Cor D (10)
2 B&E (10)° C&D
4 A&B&E&F (12)

2 Refer to Figure 1 for the paths (in parentheses) and endpoints (Letters A
toF). ® Data from this group were included in both endpoint (2) and path
(10) comparisons.
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points (1, 2, or 4) varied or endpoints were held constant (2) and
number of paths varied (10-20).

Number of Different Paths

Figure 6 presents our measure of variability: mean number of
different paths for the endpoint constraint groups during the con-
straint and free phases. Figure 7 shows data for the path constraint
groups. The top panel shows results for the constraint phase; the
bottom shows results for the free phase. There were significant
main effects of phase, F(1, 36) = 14.407, p < .001, n* = .286, and
group, F(3, 36) = 3.174 , p < .05, n* = .209. Because the
interaction was not significant (p = .113), paired-sample ¢ tests
were run. These showed that number of different paths increased
significantly between the constraint and free phases in groups 1
endpoint, #9) = —3.278, p < .01, and 2 endpoints (10 paths),
K9) = —2.765, p < .05, but not in 4 endpoints (p = .343) or 20
paths (p = .256).

The effects of endpoints and paths were evaluated with LSD
tests. As the bottom panel of Figure 6 shows, number of early
endpoints was inversely related to variability during the free phase:
The 1 endpoint group was significantly more variable than the 4
endpoints group (p < .05). The top panel of Figure 7 shows that
number of paths was directly related to variability during the

Number of Different Paths

10+ End Point Constraints

W One
3 Two
B Four

Mean number
(%]
H

0 v
Constraint
Number of Different Paths
End Point Constraints
15"
l One
N O Two
@ B Four
2 104
£
-
=
[~
]
= 5
0

Free

Figure 6. Mean number of different paths taken by the endpoint con-
straint groups during the constraint (top) and free (bottom) phases of
Experiment 2.
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Figure 7. Mean number of different paths taken by the path constraint
groups during the constraint (top) and free (bottom) phases of Experi-
ment 2.

constraint phase: The group with 20 paths was more variable than
the 10-paths group (p < .05).

Reinforcement Percentages

To determine if reinforcement densities differed, we examined
percentages of reinforced paths. During the constraint phase, these
were as follows: for endpoint constraint, the 1 endpoint
group, 96.7%; the 2 endpoints group, 95.2%; and the 4 endpoints
group, 97.1%; for path constraint, the 10-paths group, 95.2% and
the 20-paths group, 96.9%. During the free phase, all paths were
reinforced (100%). There was a significant main effect of phase,
F(1, 36) = 33.043, p < .000, n*> = .479. Reinforcement increased
between the constraint and free phases for all groups. There was no
effect of group (p = .686) and no interaction of phase and group
(p = .686).

To see if switching was rewarded, we examined percentage of
points earned for switching between different paths. Figure 8
shows these percentages for all lags in the endpoint constraint
group. Figure 9 shows them for the path constraint groups.

There were main effects of phase, F(1, 36) = 18.390, p < .001,
° = .338, and group, F(3, 36) = 2.835, p = .05, 7% = .191. The
top panel of Figure 8 shows that during the constraint phase, the 2
endpoints group earned fewer points for switching than the 4
endpoints group (p < .05). The bottom panel shows that during the
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Figure 8. Mean percentage of reinforced switches to different paths for
the endpoint constraint groups during the constraint (top) and free (bottom)
phases of Experiment 2.

free phase, the 1 endpoint group earned more than the 2 endpoints
group (p < .05). Figure 9 shows that during the (top panel)
constraint { p < .05) and (bottom panel) free phases (p < .05), the
20-paths group earned more points for switching than the 10-paths
group. The Phase X Group interaction was also significant, F(3,
36) = 3.484, p < .05, 7> = .225. Increases in the free phase were
greater in the 1 than the 2 or 4 endpoints groups and in the 10-
versus the 20-paths group.

Correlations

To see if reinforcement density or reward for switching was
related to variability, we collapsed data from the two phases. A
Pearson correlation was run between number of different paths,
percentage of reinforced paths, and percentage of reinforcers
earned for switching between paths. During both the constraint
(r = .594, p < .001) and free (r = .586, p < .001) phases, number
of different paths was positively correlated with percentage of
reinforcers earned for switching between paths.

Number of Different Endpoints

Number of different endpoints was analyzed to see if partici-
pants came in contact with the relaxed constraints during the free
phase. The mixed ANOVA showed a main effect of phase, F(1,
36) = 34.399, p < .01, %* = .489, but not of group. There was also
a significant Group X Phase interaction, F(3, 36) = 4.240, p <
05, 7* = .261.

Number of endpoints increased between the constraint (M =
2.53) and free (M = 4.42) phases in all groups, indicating that they
did contact the change in contingency. The increases were greatest
in the groups with 1 or 2 initial endpoints (constraint = 2.3,
free = 4.4) and least in the group with 4 initial endpoints (con-
straint = 3.1, free = 3.4). LSD tests showed that during the
constraint phase, the 4 endpoints group went to more endpoints

* than the 1 endpoint group (p = .011).

Self-Reports

Students’ descriptions of what they did to earn points were
sorted into the categories shown in Table 1, which presents the
percentages for each group.

As the totals show, the majority in three groups mentioned
patterns. The patterns described varied by group: The 1 endpoint
group specified zig-zagging, making diagonals, and systematic
alternations; in the less variable 4 endpoints group, 3 students said
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Figure 9. Mean percentage of reinforced switches to different paths for
the path constraint groups during the constraint (top) and free (bottom)
phases of Experiment 2.
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they went straight down the sides, and 2 others stuck to one
pattern. Mentions of endpoints referred to the specific number
restricted initially in the 1 and 2 endpoints groups (e.g., one first,
later all). The combination endpoint-vary students in the 1 end-
point group said they first went to one endpoint and then kept
changing. Most in the vary category said they pressed randomly.

It is important to note that several students mentioned that they
discovered the change in requirements by “accident” or “mistake.”
That is, while aiming for a particular endpoint, they exited at a
different one and found that it too earned points.

Discussion

Our main question again concerned the effects of the task
constraints. Experiment 1 indicated that either or both more paths
and endpoints led to higher variability. Experiment 2 showed that
path and endpoint constraints had different consequences when
they were in effect and after they were relaxed. Less restrictive
task constraints (more possible paths) led to more different paths
taken during the constraint, but not later. More restrictive ones
(fewer possible endpoints) led to more different paths taken after,
but not during, the constraint.

Our second question concerned the contents of learning. The
majority of students focused on patterns, indicating that either
specific sequences (e.g., all left or right presses) or strategies (e.g.,
reverse or mirror a previous path) were learned. When endpoints
were mentioned, it was in terms of changes in constraint (from one
or two to all). As in Experiment 1, the least frequently mentioned
alternative was varying per se. Another clue came from the Pear-
son correlations, showing that reward for switching between paths
was positively correlated with variability (number of different
paths) during both constraint and free phases. This suggests ac-
quisition of a strategy (or a visual algorithm as in Experiment 1)
involving systematic switching, which dovetails nicely with stu-
dent reports of reversing paths, alternating directions, and so on.

The distribution of strategies differed from that in Experiment 1.
When students were required to vary but were not restricted in
endpoints (note that the 5-pyramid had fewer endpoints than the
10-pyramid, but no endpoint constraint was in effect on either
pyramid), most focused on endpoints. In Experiment 2, when
they were not required to vary but were restricted to specific
endpoints, most focused on patterns. Obviously, we needed to
compare the separate and combined effects of variability and
endpoint constraints.

Experiment 3: Variability, Task,
and Combined Constraints

Experiment 3 looked at temporary and sustained variability
levels by using separate and combined task and variability con-
straints. There were two reasons for doing this.

The first was variability differences in the first two experiments.
In Experiment 1, lag requirements and number of possible paths
affected varjability while each constraint was in effect. Likewise,
in Experiment 2, possible paths only affected variability when the
constraints were in effect. However, number of endpoints affected
variability levels after the constraints were relaxed. Experiment 3
let us compare the current and sustained effects of each type of
constraint and their combination.

The second was strategy differences. In Experiment 1, when
specific levels of variability were required, the most-mentioned
strategy involved endpoints. In Experiment 2, when specific end-
points were required, the predominant focus was on patterns.
Experiment 3 would reveal what happens when both variability
levels and endpoints are specified. To these ends, Experiment 3
used one display (the 5-pyramid), one variability constraint (a
moderate lag), one task constraint (a single endpoint), and their
combination.

Method
Participants

Forty-five Barnard and Columbia College undergraduates (49 women, 6
men) participated to fulfill an introductory psychology class requirement.

Apparatus and Stimuli
Apparatus and stimuli were identical to those used in Experiment 2.
Procedure

The instructions used in Experiment 2 were read to all participants, who
were randomly assigned to one of three constraint groups. The constraints
were in effect until 50 points were earned. Group names indicate the type
of constraint. In the lag group, only paths that differed from five prior paths
were rewarded. In the endpoint group, reward followed paths exiting the
pyramid at the one endpoint, C. In the combination group, reward de-
pended on two things: exiting at the C endpoint and doing so taking a path
that differed from five prior paths. Once 50 points were eamed, the
constraints were relaxed. The experiment lasted for 100 additional trials,
during which any path earned points.

Results

The experiment lasted for 150 reinforced trials, which—for
analyses—were divided into blocks of 25 reinforced trials each. As
in Experiment 2, the last block in the constraint phase (26th to 50th
reinforced trials) and in the free phase (126th to 150th reinforced
trials) were examined. Mixed two-way ANOV As with group (lag,
endpoint, or combination) and phase (constraint or free) as vari-
ables were used to compare responding between these blocks.
Fisher’s LSD test was used for post hoc comparisons. A signifi-
cance level of .05 was used.

Number of Different Paths

As in Experiments 1 and 2, this is our measure of variability.
Figure 10 shows the mean number of different paths taken by each
group during the (top panel) constraint and (bottom panel) free
pbases. The ANOVA showed a main effect of group, F(2,
42) = 9.013, p < .001, 7* = .300, and a significant Phase X
Group interaction, F(2, 42) = 9.016, p < .001, 5% = .300. There
was no main effect of phase (p = .203). Number of different paths
increased between the constraint and free phases in the endpoint,
decreased in the lag, and remained the same in the combination
groups.

The LSD tests showed that during the constraint phase, the two
groups with the lag requirement (lag and combination) took more
different paths than the endpoint group (both ps < .001). During
the free phase, the combination group became the most variable,
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Figure 10. Mean number of different paths taken by the lag, endpoint,
and combination groups during the constraint (top) and free (bottom)
phases of Experiment 3.

taking more paths than either the endpoint (p < .05) or lag (p <
.01) groups.

Reinforcement Percentages

To see if reinforcement densities differed, we examined per-
centage of reinforced paths. During the constraint phase, these
were as follows: lag group, 88%; endpoint group, 93%; and
combination group, 55%. In the free phase, 100% of paths were
reinforced in all groups. There were significant main effects of
phase, F(1, 42) = 137.192, p < .001, n* = .766, and group, F(2,
42) = 38.552, p < .001, * = .647. The interaction was also
significant, F(2, 42) = 38.552, p < .001, n* = .647. Reinforce-
ment increased from the constraint to the free phases for all groups.
The greatest increase was in the combination group. The LSD tests
showed that, during the constraint phase, both the lag and endpoint
groups had higher percentages of reinforced paths than the com-
bination group (both ps < .001).

Figure 11 shows the percentage of reinforcers earned for switch-
ing between paths. The top panel presents results from the con-
straint phase; the bottom panel presents results from the free phase.
There were main effects of group, F(2, 42) = 8.199, p < .001,
1% = .281, and phase, F(1, 42) = 17.791, p < .001, * = .298, as

well as a significant Group X Phase interaction, F(2,
42) = 15.659, p < .001, 1> = .427. LSD tests showed that during
the constraint phase, the lag group was reinforced for switching
more often than the endpoint or combination groups (both ps <
-001). Although there were no significant differences during the
free phase, the group that was reinforced most for switching
(combination group) also took the highest number of different
paths.

Correlations

To see if there were any relationships between variability (num-
ber of different paths) and reinforcement, we ran a Pearson cor-
relation between number of different paths, percentage of rein-
forced paths, and percentage of reinforcers earned for switching
between paths. Data were collapsed over groups. During the con-
straint phase, number of different paths was negatively correlated
with percentage of reinforced paths (r = — 418, p < .01) and
positively with percentage of reinforced switches to different paths
(r = 505, p < .001). During the free phase, number of different
paths was positively correlated with percentage of reinforced
switches to different. paths (r = .650, p < .001).

Reinforced Switches to Different Paths
Variability, Task, and Combined Constraints

100
M Lag
O End Point
80 B Combo
]
o
£ o
@
©
]
Q. 40
[
@
@
= 204
[]

Constraint

Reinforced Switches to Different Paths
Variability, Task, and Combined Constraints

100

M Lag
[J End Point
80 - B combo
@
o
g o
@
©
-
@
2 40
c
<
@
E 20-
1]

Free

Figure 11. Mean percentage of reinforced switches to different paths
taken by the lag, combination, and endpoint groups during the constraint
(top) and free (bottom) phases of Experiment 3.
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Our conclusion is a caveat. Be careful, not casual, about the
constraints you choose to introduce new skills. They will deter-
mine how variably your students use those skills.
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