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ABSTRACT

Place-value is a problem for American, but not for Asian children whose counts make the base-10
patterning of the number system explicit. A pilot curriculum using an explicit base-10 count and
a single manipulative was initially tested with kindergarteners.  Results showed the children
mastering place-value, and using that knowledge to solve single- and double-digit addition and
subtraction problems. Given that later achievement in math is highly correlated with early
achievement, the current study asked is first grade early enough? These results show that, despite
having already learned the English language count, first grade is early enough to master an
explicit base-10 count and solve the place value problem.
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BACKGROUND: STRUCTURING THE
SOLUTION
My expertise is not in mathematics, but in
problem-solving per se. My solution to the
place-value problem was structured in what
Newell and Simon (1972) called a problem
space. A problem space has three parts: an
initial state, a goal state, and between the two,
a search space in which a solution path is
constructed.  Constraint pairs are tools for
structuring a solution path (Reitman, 1969;
Simon, 1973; Stokes, 2006, 2010, 2013).

Table 1: Explicit base-10 count.

One of each pair precludes something
specific in the initial state, the other directs or
promotes search for a substitute.

The Place-Value Problem

Place-value is problematic for American, but
not for Asian children, whose languages
clarify the recursive patterning of the base-10
count (Fuson, 1990; Miura & Okamoto,
2003). Table 1 shows an abbreviated version
of the Asian (Korean, Chinese, Japanese)
count from 1 through 29.

Ones Tens Twenties
10 ten 20 two-ten
1 one 11 ten-one 21 two-fen-one
2 two 12 fen-two 22 two-fen-two
3 three 13 ten-three 23 two-fen-three
4 four 14 ten-four 24 two-ten-four
5 five 15 ten-five 25 two-ten-five
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6 six 16 ten-six

7 seven 17 ten-seven
8 eight 18 ten-eight
9 nine ' 19 fen-nine

26 two-ren-six
27 two-fen-seven
28 two-ten-eight
29 two-fen-nine

There are several important things to notice
about the count. First, there are only ten
number names (1 to 10), which combine to
form higher numbers. Second, ten appears
in every number above ten: 11 is fen-one; 21
is two-fem-one. In contrast to American
children who think of numbers as
concatenations of ones (21 means 21 ones),
Asian children think of numbers as tens and
ones (21 means 2 tens and 1 one). Thinking
this way, place-value is not a problem.

The Solution

The solution was not simply to introduce an
explicit base-10 count, but to embed it in a
curriculum that taught children to think
mathematically, in large meaningful patterns.

Table 2 shows the problem space. The initial
state was current curricula. The goal state
was the new curriculum. Its criterion was
“thinking in numbers, symbols, and
patterns.”

The first constraint pair precluded the
English language count and promoted an
explicit base-10 count. The second and third
were selected to further satisfy the new
criterion. By “words” I meant videos with
cartoon characters, as well as work sheets
with stories and word problems that can
distract children from the strictly numeric.
The single manipulative was meant, like the
abacus, to make base-10 numbers and
patterns tangible and concrete.

Table 2: Problem Space for New Math Curriculum

Problem Parts Description

Initial State Current curricula

Search Space Constraint pairs

Preclude Promote
English language count > Explicit base-10 count
Words > Numbers, symbols, patterns
Multiple manipulatives > Single manipulative
Goal State New curriculum
Criterion Thinking in numbers, symbols, and patterns

Figure 1 shows the manipulative, called the
count-and-combine chart, with the numbers 1
through 5. The movable parts, meant to be
combined and recombined in multiple ways
are number names, numbers, symbols, and
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colored boxes (which the children call
“blocks™) representing ones. Children begin
by reciting the rows. The top row is read
“number one same as word one equals one
block.” Figure 2 shows the chart with the
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numbers 10 to 15 (ten-five). Notice that ten
is represented as a unit, by a single block
simply marked “10.”  Notice too, the
similarities between the charts. In each, the

block pattern mirrors the regularities in the
count: three equals 3 one blocks; ten-three
equals one 1 ten block and 3 one blocks.

1 = One =

2 = Two =

3 = | Three | =

4 = Four =

5 = Five =

Figure 1. Count-and-combine chart for numbers 1 to 5.

10 = Ten =
i1 = Ten-one =
iz = Ten-two =
i3 = | Ten-three | =
14 = Ten-four | =
15 = Ten-five =

Figure 3: Count-and-combine chart for numbers 10 to 15

IMPLEMENTING THE SOLUTION IN
FIRST GRADE

To see if first grade was early enough to

successfully introduce an explicit base-10

curriculum, a design similar to the

METHOD

Participants

Participants were twenty eight students from
two first grade classes at a suburban public
school. The classes were sorted by gender (to
balance the number of boys and girls) and not
by ability. One class served as the test, the
other as the comparison, group. Both
adhered to the New Jersey State Standards in
math. The pilot group, like the comparison,
used materials from Scott-
Foresman/Addison-Wesley (enVisionMATH,
2011) for topics like patterns, graphs, and
measurements. The new curriculum (Only
the NUMBERS Count©) replaced materials
covering numbers and numeric relations.

kindergarten study was implemented. One
first grade class (the test group) used the new
curriculum; another class (the comparison
group) in the same school used the district-
wide curriculum.

The time for math was allotted equally across
groups.
Test Group

Students. At the start of the school
year, 21 students (11 female, 10 male)
participated in pre-testing. Six of these (3
female, 3 male) were not post-tested, and are

" not included in the analyses. Of the

remaining 15 students, 8 were female and 7
male; 1 was Asian, 1 was African-American,
2 were multiracial, 6 were Hispanic and 5
were  White. Six were economically
disadvantaged (i.e., qualified for free lunch).
All were proficient in English, of these, 12
were bi-lingual, speaking a language other
than English at home. Mean age at the time
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of pre-testing was 80 months, range was 72
to 94 months.

Teacher.  The  teacher  had
participated in the development of the new
curriculum two years earlier while teaching
and introducing the curriculum to her
kindergarten class. She had previously used
both  Everyday  Math  and  Scott
Foresmann/Addison Wesley (Math Series
Copyright 2008). At the start of the school
year, she had five years teaching experience,
four teaching kindergarten and one (the
previous year) teaching first grade.
Comparison Group

Students. At the start of the school
year, 18 students (11 female, 7 male)
participated in pre-testing. Five of these (3
male, 2 female) were not post-tested, and are
not included in either the analyses. Of the
remaining 13 students, 9 were female and 4
male; 8 were Hispanic and 5 were White.
Ten were economically disadvantaged (i.e,
qualified for free lunch). All were proficient
in English, of these, 8 were bi-lingual,
speaking a language other than English at
home. Mean age at time of pre-testing was
78 months, range was 71 to 81 months.

Teacher. The teacher for the
comparison group followed the district’s

Table 3. Pre-Test Tasks _

current curriculum (enVisionMATH). She
had previously used the same earlier Scott
Foresman curriculum as the test teacher. She
had three years teaching experience, all in
first grade.
Materials and Procedure
The study was conducted in three phases.
Phase 1 involved pre-testing to assess
children’s prior knowledge. Phase 2
involved observing test and comparison
classrooms on a weekly basis. Phase 3
involved post-testing to assess what had been
learned. Testing and observations were
conducted by the primary experimenter and
three undergraduate research assistants (all
female).
Phase 1: Assessing Prior Knowledge

There were two reasons for pre-
testing at the start of the school year. The
first was to see if the classes were equivalent
in mathematical ability and/or preparation.
The second was to compare specific changes
in numeric understanding at post-test. Table
3 summarizes items on the pre-test. The
place value task was a variant of the Choose
the Larger Number Test, which requires
picking the larger of a pair of numbers (Fuson
& Briars, 1990).

Category Content

Count to 100

By ones. Counting was coded as correct up to the first error (If a child  counted

11, 12, 15, her score would be 12, the highest number  correctly counted).
By tens. Again, counting was coded as correct to the first error.

Number of 10s

Number/symbol identification

Children were asked how many tens there are in 30 and in 50.

Children read aloud numbers (1, 2, 3,4, 5,7, 8, 12, 15, 17, 20, 32) alone or
combined with symbols (plus, minus, equals) in problem formats like 2 +2 = 4.

Place value

Children were asked (a) to read aloud the written numbers 16, 25, 31, 56, 11; (b)

to tell the experimenter which of each pair was bigger and (c) to explain their

answers.
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Addition

Children solved four problems in which one or both addends were less than 10

(3+5,6+6,9+7,10+8). They were asked to (a) read each problem,
(b) solve it, and (¢) explain what they did.

Subtraction

Children solved three problems in at least one number was a single digit (5 — 3,

10 -5, 13 —6), and one in which both numbers were identical (10 — 10). They
were asked to (a) read the problem, (b) solve it, and (c¢) explain what they did.

Combinations

Children make up two different addition problems for each of the following

sums: §, 10, 16, 22. The problems looked like this:  +  =8.

Word Problems

Children solved two addition and three subtraction word problems.

Phase 2: Observing the two classes
Here 1 illustrate (in simplified form) how
double-digit addition was introduced in
February. Ichose these lessons because both
classes used manipulatives to represent 10. I
also point out how one clarified place-value,
and how the other obscured it.
Test class

Children were given baskets with
blocks representing ones, tens, plus and
equals signs. The teacher wrote the addition
problem on the board. The children used the
10 and 1 blocks to make the addition

combination. They first added the tens and
then the ones. The count makes this
separation obvious. It also makes place-
value obvious. The top row of Figure 4
shows the problem 21 +22. It was read “two-
ten-one plus two-ten-two.” The children
added the ten blocks first: two-ten plus two-
ten is four-ten. Then they would add the
ones: one plus two is three. The answer, four-
ten-three, would also be written in numbers
and symbols.

Figure 4. Top row ten and one blocks combined for addition problem 21 + 22. Bottom row: ten

and one blocks for problem 15 + 15.

The second problem (15 + 15) shows what
happens if the ones add up to 10 or more. The
problem would be read as “ten-five plus ten-
five.” The children would combine the
blocks to look like the bottom row of Figure
4. First they would add the tens: ten plus ten
is two-ten. Then they would add the fives:
two Ss are 10. Finally, they would add this
ten to the two-ten.

The answer, three-ten, would also be written
in numbers and symbols.

Notice that place-value is clear in the
blocks, in the adding, and in the answer.
Comparison Class

In a lesson on skip-counting by 10s,
children were given work sheets, cube trains
for 10s and individual cubes for Is.
Problems on the work sheet included
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illustrations of cube trains. If the problem on
the work sheet were 28 + 30 =, it would look
like Figure 5. The children would skip count
from 28: (once) 38 (twice) 48 (three times)
58. The answer, 58, would be filled in on the
work sheet.

28 +

Figure 5. Three cube trains used to represent 30.

Shouldn’t a lesson like this one,
concentrating on 10s, contribute to
understanding place value? Idon’t think so,
and for two reasons. First, a cube train (or
stick) is both seen and called a group of 10
ones. Counting by tens means counting by
groups of ten ones. This kind of bundled
manipulative  contributes to American
children  thinking of numbers as
concatenations of ones. There is clear
evidence for this. When asked to represent a
number (42) wusing big blocks that
new items. Table 4 describes tasks on the
post-test.

Table 4. Post-Test Tasks

If the problem were 51 + 40, the
children would skip count four groups of 10.
Starting with 51, they would skip once to 61;
skip twice to 71; skip three times to 81;
and finally, skip four times to 91.

represented 10s and small ones that
represented ones, Asian children gathered 4
American children counted out 42 one blocks
(Miura & Okamoto, 2003; Miura et al.,1988).
Second, our number names nullify the
counting by 10s: 91 is called ninety-one.
When the 10s place is not named, the tens
lose their place-value.

Phase 3: Assessing New Knowledge
The post-test was administered at the close
of the school year.

Category Content

Count to 100 Identical to pre-test.

Number/symbol identification
Identical to pre-test.

Number of 10s Identical to pre-test.
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Place value Identical to pre-test.

Children solved three problems from the pre-test (3 +5, 6 + 6, 9 + 7) and three

new problems in which both addends were 10s (10 + 18,21 + 11,35+ 17).

Children solved three problems from the pre-test (5 —3, 10 -5, 13 — 6) and three

Children were asked to make up two problems withtwo addends (__ + =8)

__+  =18) for each of the following sums: 8,

Addition
Subtraction
new problems (20 — 20, 32 — 15, 25 - 19).
Combinations
and one problem with three (_ +
10, 16, 25.
Word Problems

Children solved four addition and two subtraction word problems. One was

taken from the pre-test; two were more difficult variants of the original

problems; the others were new.

RESULTS

Average accuracies, calculated as percentage
correct, are shown in Table 5. Items in bold-
face are those in which the test group
performed noticeably better than the
comparison group.

Both groups improved and, at post-
testing, were comparable in counting,
number/symbol identification, and single-
digit addition. However, only the test group
was proficient at place-value. Counting
correctly is sufficient to know the ordering,
but not the place-value of numbers in a count.
On all other items, the test group had
noticeably higher average accuracies at post-
testing than the comparison group.

Table S. Pre-and post-test scores for first grade classes: Average accuracies.

Group
Test Comparison
Pre Post Pre Post
Measure M SD M SD M SD M SD
Count to 100 80.73  25.57 96.06 15.23 88.84  27.02 96.76 11.36
by 10s 74.00  44.68 100.00 .00 6538 4351 100.00 .00
Tensin 30 & 50  40.00  50.70 100.00 .00 23.07  43.85 84.61 37.55
Number-Symbol
Identification 95.13 9.64 100.00 .00 94.46 7.75 100.00 .00
Place Value 58.33 46.92 93.33 25.81 .00 .00 .00 .00
Same* 66.67 48.79 93.33 25.81 .00 .00 .00 .00
Addition
Single 53.33 29.65 91.13 19.79 73.69 28.67 84.69 21.98
Double 71.20 35.34 20.53 34.86
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Subtraction

Single 39.80 40.15 91.20

From same 60.00  50.70 106.00

Double 36.66
Addition Combos

Doubles 64.20 3432 92.53

Triples 96.00
Word Problems

Addition 93.33 17.59 91.66

Subtraction  30.00 36.83 76.66

15.10
.00
39.94

13.11
20.70

20.41
41.69

48.38 37.40 72.00 26.64
38.46 50.63 76.92 48.85
.00 .00

63.69 32,75 54.07 34.01
32.69 40.03

80.76 2531 61.53 21.92
4230 3443 34.61 42.74

*Place Value Same: Test item with identical numeral in tens and ones places — number was 11.

ASSESSING THE SOLUTION
Why did the new curriculum work so well?
To answer this question, 1 review the
contributions of the explicit base-10 count
and the single manipulative.

Contribution of the Count: Thinking in
Base-10

Asian children have long out performed
American not only on place-value, but also
on multi-digit addition and subtraction
(Fuson & Kwon, 1990; Song & Ginsberg,
1987, Stiger, Lee, & Stevenson, 1990). In
like manner, the test class — using an English
language version of the Asian count — out
performed the comparison class on multi-
digit addition and subtraction.

I attribute their performance, in large
part, to thinking in base-10. Think of it this
way. The explicit base-10 count named the
place of each number. Children using the
count thought of 24 as 2 tens and 2 fours.
Thinking in this way, the multi-digit problem
24 + 37 became “two-ten-four” plus “three-
ten-seven.” As shown in the sample lesson,
the children would first add the tens (to get
five-ten), and then add the ones (to get ten-
one). Again adding the tens (five-ten plus
ten) they would get six-ten, which appended
to the one gives the answer, six-ten-one.
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Thinking in base-10 facilitated multi-digit
calculation.

Contribution of the Count-and-Combine
Chart: Practicing in Base-10

Experts solve problems using large
meaningful patterns in their areas of expertise
(Ericson, 2006; Newell & Simon, 1972).
The count-and-combine chart was designed
to make numbers and symbols real, concrete,
things with highly visible, patterned
relationships among them. The similarities
between the charts for lower and higher
numbers (1-10, 10-20) visualized and
emphasized the reiterative pattern of the
number system. Importantly, the moveable
“blocks” stood for numbers and symbols and
nothing else. Equally importantly, the “ten”
block stood for 10 and nothing else.

Practice with the chart and the
moveable blocks was iterative and
elaborative. Children practiced the pattern of
the base-10 count by reciting and
reconstructing each chart. They practiced the
patterns of base-10 solutions for addition and
subtraction problems. On a daily basis, they
recomposed and decomposed combinations
of'tens and ones blocks to solve problems. As
the numbers increased, so did the possible
combinations and the complexity of the
problems. This kind of focused, continuous,
incremental practice is similar to a Japanese
first grade curriculum described by Murata
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and Fuson (2006) as “coherent, with fewer
topics that build over a year,” opposed to the
typical “mile wide inch deep US pattern” (p.
454).

As 1 argued in an earlier section,
practice using the ten block, which stood
solely for 10 and not for a grouping of ten 1s,
was critical to mastering both place-value
and multi-digit computation. Using
the ten block made practice in base-10
possible.

Answers to Anticipated Questions
Did children also use the regular count?
First graders in the test group, like
kindergarteners in the earlier study (Stokes,
2013) were fluent in both the explicit base-10
and the regular count. They could
interchangeably refer to the number 20 as
“two-ten” or “twenty.”
How did they do so well on word problems?
Word problems were not excluded
from the curriculum, but they were only
introduced after children acquired
mathematical models on which to map them.
Once children knew how to add and subtract,
the teacher simply told them to think of things
in the word problem as “blocks.” As post-
test results showed, the mapping helped solve
the problems.
How were non-numeric items taught?
Materials from the district-wide
curriculum were used for common core items
like measurement, graphs, and shapes. Other
items not included the core were also taught
using the new count. For example, the count
makes understanding money relatively
simple. 100 is ten-ten; there are ten dimes in
a dollar. Half of ten-ten is five-ten; there are
two fifty cent pieces in a dollar, etc.
Were post-test differences due to the
teachers?
This is impossible to assess since they
were using different curricula. However, we
can compare two kindergarten teachers who

1 Only those who were both pre- and post-tested.

used the new curriculum for the first time last
year. Data from district wide computerized
testing (Renaissance STARMath) took place
during the sixth month of the school year. In
both classes, 93% of the children scored
above grade level. Scores ranged from 0.5
(fifth month, kindergarten) to 2.3 or 2.4 (third
or fourth month, second grade). Same
curriculum, different teachers, comparable
results.

How did the classes compare on the district
wide tests?

Again, the test group scored higher
than the comparison. Scores for children
whose data was included in the present study’
are reported here. Children were tested at the
end of the school year (June).

In the test group, 71% of the children
scored above grade level. Scores ranged
from 2.0 (start of second grade) to 3.6 (sixth
month, third grade). 29% scored below grade
level. These scores ranged from was 1.5
(fifth month, first grade) to 1.6 (sixth month,
first grade).

In the comparison group, 30% of the
children scored above grade level. Their
range was 2.1 (first month, second grade) to
2.7 (seventh month, second grade). 69%
scored below. The range here was from 1.3
(third month, first grade) to 1.6 (sixth month,
first grade).

Did the pilot curriculum have any lasting
effects on mathematical performance?

To answer this question, recent
district-wide computerized test scores (third
grade, fifth month) for students from the
original test and comparison groups were
examined. The groups did not remain intact.
By third grade, only 60% of the test group,
and 72% of the comparison group were still
in the school, and were distributed in three
different classes.

Mean and median scores for the test
group were both 4.3 (third month, fourth
grade); scores ranged from 3.4 (fourth month,
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third grade) to 5.3 (third month, fifth grade).
Mean and median scores for the comparison
group were both 3.9 (ninth month, third
grade); scores ranged from 3.2 (second
month, third grade) to 4.5 (fifth month, fourth
grade).

Overall, the performance gap was
four months. A bigger difference appeared at
the top: 44% of the test group scored at or
above 4.5 (fourth grade, fifth month — a year
ahead); only 8% of the comparison group did
as well.

Immersion in Base-10: Implications ...
Immersion is critical to the new curriculum.
Immersed in an explicit base-10 curriculum
for an entire school year, first graders - like
kindergarteners in an earlier study (Stokes,
2013) - had little difficulty in mastering
place-value or double-digit addition and
subtraction. The results of the two studies
have two implications.

One, immersion can help
kindergarteners and first graders meet
common core requirements (1 and 2 OA:
Operations and Algebraic Thinking, and 1

and 2 NBT: Numbers and Operations in Base
Ten) for both first and second grades.
Second, immersion is inexpensive,
intuitive, and enjoyable. The count-and-
combine charts, along with the baskets of
blocks, were all made by the teacher with
foam core, velcro, and poster board. In
comparison to the curricula she had
previously used (Everyday Math, Scott
Forseman/Addison Wesley Math Series), the
test group teacher reported that the new
curriculum was intuitive and easier — both for
her to teach and for her students to learn.
... and Conclusion.
Early  mathematical  performance s
predictive of later performance (Duncan,
Dowsett, Claessens, Magnuson, Huston, &
Klebanov, 2007; Stevenson & Newman,
1986). The current study asked if first grade
was early enough to immerse children in an
explicit base-10 count and curriculum. The
answer was yes. The hope is that solving the
place-value problem early will improve
mathematical understanding and
accomplishment later.
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